Difference between revisions of "Mathematics/Calculus/Corner cases"
From Thalesians Wiki
< Mathematics | Calculus
(Edited a corner case: added another solution.) |
(Added a corner case) |
||
| Line 25: | Line 25: | ||
= Integrals = | = Integrals = | ||
== The integral <math>\int x^x \, dx</math> == | |||
=== Question === | |||
What is <math>\int x^x \, dx</math>? | |||
=== Solution === | |||
* We can write <math>x^x</math> as <math>(e^{\ln x})^x = e^{x \ln x}</math>. | |||
* Consider the series expansion of <math>e^{x \ln x}</math>: | |||
<math>e^{x \ln x} = 1 + (x \ln x) + \frac{(x \ln x)^2}{2!} + \frac{(x \ln x)^3}{3!} + \ldots + \frac{(x \ln x)^i}{i!} + \ldots = \sum_{i=0}^{\infty} \frac{(x \ln x)^i}{i!}</math>. | |||
* We can interchange the integration and summation (we can recognize this as a special case of the Fubini/Tonelli theorems) and write | |||
<math> | |||
\int x^x \, dx = \int \left( \sum_{i=0}^{\infty} \frac{(x \ln x)^i}{i!} \right) \, dx = \sum_{i=0}^{\infty} \left( \int \frac{(x \ln x)^i}{i!} \, dx \right) = \sum_{i=0}^{\infty} \left( \frac{1}{i!} \int x^i (\ln x)^i \, dx \right). | |||
</math> | |||
= Limits = | = Limits = | ||
Revision as of 09:09, 22 December 2020
Derivatives
The derivative of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{d}{dx} x^x}
Question
What is Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{d}{dx} x^x} ?
Solution 1
- Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y = x^x} .
- Take Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ln} of both sides: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ln y = x \ln x} .
- Differentiate both sides: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{d}{dx} \ln y = \frac{d}{dx} x \ln x} .
- Apply the chain rule on the left-hand side: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{d}{dx} \ln y = \frac{1}{y} \cdot \frac{dy}{dx}} .
- Apply the product rule on the right-hand side: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{d}{dx} x \ln x = 1 \cdot \ln x + x \cdot \frac{1}{x} = \ln x + 1} .
- Putting it together, we have Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{y} \cdot \frac{dy}{dx} = \ln x + 1} .
- Hence Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{dy}{dx} = y (\ln x + 1) = x^x (\ln x + 1)} .
Solution 2
- Note that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x = e^{\ln x}} , so Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x^x = (e^{\ln x})^x = e^{x \ln x} } .
- Applying the chain rule, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{d}{dx} x^x = \frac{d}{dx} e^{x \ln x} = e^{x \ln x} \frac{d}{dx} x \ln x} .
- Applying the product rule, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{d}{dx} x \ln x = 1 \cdot \ln x + x \cdot \frac{1}{x} = \ln x + 1} .
- Therefore Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{d}{dx} x^x = e^{x \ln x} (\ln x + 1) = x^x (\ln x + 1)} .
Integrals
The integral Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int x^x \, dx}
Question
What is Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int x^x \, dx} ?
Solution
- We can write Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x^x} as Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (e^{\ln x})^x = e^{x \ln x}} .
- Consider the series expansion of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle e^{x \ln x}} :
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle e^{x \ln x} = 1 + (x \ln x) + \frac{(x \ln x)^2}{2!} + \frac{(x \ln x)^3}{3!} + \ldots + \frac{(x \ln x)^i}{i!} + \ldots = \sum_{i=0}^{\infty} \frac{(x \ln x)^i}{i!}}
.
- We can interchange the integration and summation (we can recognize this as a special case of the Fubini/Tonelli theorems) and write
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int x^x \, dx = \int \left( \sum_{i=0}^{\infty} \frac{(x \ln x)^i}{i!} \right) \, dx = \sum_{i=0}^{\infty} \left( \int \frac{(x \ln x)^i}{i!} \, dx \right) = \sum_{i=0}^{\infty} \left( \frac{1}{i!} \int x^i (\ln x)^i \, dx \right). }