Difference between revisions of "Mathematics/Calculus/Corner cases"
(Added a corner case) |
(Added some corner cases.) |
||
Line 43: | Line 43: | ||
= Limits = | = Limits = | ||
== The limit of <math>\lim_{x \tendsto 0^+} x^x</math> == | |||
=== Question === | |||
What is <math>\lim_{x \tendsto 0^+} x^x</math>? | |||
=== Solution === | |||
* Note that <math>x = e^{\ln x}$, so $x^x = (e^{\ln x})^x = e^{x \ln x}</math>. | |||
* We can further rewrite this as <math>x^x = e^{x \ln x} = e^{\frac{\ln x}{\frac{1}{x}}}</math>. | |||
* As long as <math>f</math> is continuous and the limit of <math>g</math> exists at the point in question, the limit will commute with composition: | |||
<math> | |||
\lim_{x \tendsto t} f(g(x)) = f(\lim_{x \tendsto t} g(x)). | |||
</math> | |||
In our case, <math>e(\cdot)</math> is continuous, so | |||
<math> | |||
\lim_{x \tendsto 0^+} x^x = e^{\lim_{x \tendsto 0^+} \frac{\ln x}{\frac{1}{x}}}. | |||
</math> | |||
* The question, then, is what is <math>\lim_{x \tendsto 0^+} \frac{\ln x}{\frac{1}{x}}</math>. | |||
* As <math>x \tendsto 0^+</math>, <math>\ln x \tendsto -\infty$, $\frac{1}{x} \tendsto +\infty</math>. In this situation we can apply l'Hôpital's rule: | |||
<math> | |||
\lim_{x \tendsto 0^+} \frac{\ln x}{\frac{1}{x}} = \lim_{x \tendsto 0^+} \frac{\frac{d}{dx} \ln x}{\frac{d}{dx} \frac{1}{x}} = \frac{\frac{1}{x}}{-\frac{1}{x^2}} = \frac{\frac{1}{x} \cdot x^2}{-\frac{1}{x^2} \cdot x^2} = -x. | |||
</math> | |||
* Hence <math>\lim_{x \tendsto 0^+} x^x = e^0 = 1</math>. | |||
== The limits of <math>\lim_{x \tendsto +\infty} x \sin \frac{1}{x}</math> and <math>\lim_{x \tendsto -\infty} x \sin \frac{1}{x}</math> == | |||
=== Question === | |||
What are <math>\lim_{x \tendsto +\infty} x \sin \frac{1}{x}</math> and <math>\lim_{x \tendsto -\infty} x \sin \frac{1}{x}</math>? | |||
=== Solution === | |||
* Let us rewrite <math>x \sin \frac{1}{x}$ as $\frac{\sin \frac{1}{x}}{\frac{1}{x}}</math>. | |||
* As <math>x \tendsto +\infty$, $\frac{1}{x} \tendsto 0</math> and <math>x \sin \frac{1}{x} \tendsto 0</math>. | |||
* We have ``<math>\frac{0}{0}</math>'', so we can apply l'Hôpital's rule. | |||
* Differentiating the numerator in <math>\frac{\sin \frac{1}{x}}{\frac{1}{x}}</math>, we obtain <math>\left(\cos \frac{1}{x}\right) \left(-\frac{1}{x^2}\right)</math>. | |||
* Differentiating the denominator in <math>\frac{\sin \frac{1}{x}}{\frac{1}{x}}</math>, we obtain <math>-\frac{1}{x^2}</math>. | |||
* Thus | |||
<math> | |||
\lim_{x \tendsto +\infty} x \sin \frac{1}{x} = \lim_{x \tendsto +\infty} \frac{\sin \frac{1}{x}}{\frac{1}{x}} = \lim_{x \tendsto +\infty} \frac{\left(\cos \frac{1}{x}\right) \left(-\frac{1}{x^2}\right)}{-\frac{1}{x^2}} = \lim_{x \tendsto +\infty} \cos \frac{1}{x} = 1. | |||
</math> | |||
* Similarly we can find that <math>\lim_{x \tendsto -\infty} x \sin \frac{1}{x} = 1</math>. |
Revision as of 09:19, 22 December 2020
Derivatives
The derivative of
Question
What is ?
Solution 1
- Let .
- Take of both sides: .
- Differentiate both sides: .
- Apply the chain rule on the left-hand side: .
- Apply the product rule on the right-hand side: .
- Putting it together, we have .
- Hence .
Solution 2
- Note that , so .
- Applying the chain rule, .
- Applying the product rule, .
- Therefore .
Integrals
The integral
Question
What is ?
Solution
- We can write as .
- Consider the series expansion of :
.
- We can interchange the integration and summation (we can recognize this as a special case of the Fubini/Tonelli theorems) and write
Limits
The limit of Failed to parse (unknown function "\tendsto"): {\displaystyle \lim_{x \tendsto 0^+} x^x}
Question
What is Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{x \tendsto 0^+} x^x} ?
Solution
- Note that .
- We can further rewrite this as .
- As long as is continuous and the limit of exists at the point in question, the limit will commute with composition:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{x \tendsto t} f(g(x)) = f(\lim_{x \tendsto t} g(x)). } In our case, is continuous, so Failed to parse (unknown function "\tendsto"): {\displaystyle \lim_{x \tendsto 0^+} x^x = e^{\lim_{x \tendsto 0^+} \frac{\ln x}{\frac{1}{x}}}. }
- The question, then, is what is Failed to parse (unknown function "\tendsto"): {\displaystyle \lim_{x \tendsto 0^+} \frac{\ln x}{\frac{1}{x}}} .
- As Failed to parse (unknown function "\tendsto"): {\displaystyle x \tendsto 0^+} , Failed to parse (unknown function "\tendsto"): {\displaystyle \ln x \tendsto -\infty$, $\frac{1}{x} \tendsto +\infty} . In this situation we can apply l'Hôpital's rule:
Failed to parse (unknown function "\tendsto"): {\displaystyle \lim_{x \tendsto 0^+} \frac{\ln x}{\frac{1}{x}} = \lim_{x \tendsto 0^+} \frac{\frac{d}{dx} \ln x}{\frac{d}{dx} \frac{1}{x}} = \frac{\frac{1}{x}}{-\frac{1}{x^2}} = \frac{\frac{1}{x} \cdot x^2}{-\frac{1}{x^2} \cdot x^2} = -x. }
- Hence Failed to parse (unknown function "\tendsto"): {\displaystyle \lim_{x \tendsto 0^+} x^x = e^0 = 1} .
The limits of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{x \tendsto +\infty} x \sin \frac{1}{x}} and Failed to parse (unknown function "\tendsto"): {\displaystyle \lim_{x \tendsto -\infty} x \sin \frac{1}{x}}
Question
What are Failed to parse (unknown function "\tendsto"): {\displaystyle \lim_{x \tendsto +\infty} x \sin \frac{1}{x}} and Failed to parse (unknown function "\tendsto"): {\displaystyle \lim_{x \tendsto -\infty} x \sin \frac{1}{x}} ?
Solution
- Let us rewrite .
- As Failed to parse (unknown function "\tendsto"): {\displaystyle x \tendsto +\infty$, $\frac{1}{x} \tendsto 0} and Failed to parse (unknown function "\tendsto"): {\displaystyle x \sin \frac{1}{x} \tendsto 0} .
- We have ``, so we can apply l'Hôpital's rule.
- Differentiating the numerator in , we obtain .
- Differentiating the denominator in , we obtain .
- Thus
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{x \tendsto +\infty} x \sin \frac{1}{x} = \lim_{x \tendsto +\infty} \frac{\sin \frac{1}{x}}{\frac{1}{x}} = \lim_{x \tendsto +\infty} \frac{\left(\cos \frac{1}{x}\right) \left(-\frac{1}{x^2}\right)}{-\frac{1}{x^2}} = \lim_{x \tendsto +\infty} \cos \frac{1}{x} = 1. }
- Similarly we can find that Failed to parse (unknown function "\tendsto"): {\displaystyle \lim_{x \tendsto -\infty} x \sin \frac{1}{x} = 1} .