|
|
Line 55: |
Line 55: |
| * We can further rewrite this as <math>x^x = e^{x \ln x} = e^{\frac{\ln x}{\frac{1}{x}}}</math>. | | * We can further rewrite this as <math>x^x = e^{x \ln x} = e^{\frac{\ln x}{\frac{1}{x}}}</math>. |
| * As long as <math>f</math> is continuous and the limit of <math>g</math> exists at the point in question, the limit will commute with composition: | | * As long as <math>f</math> is continuous and the limit of <math>g</math> exists at the point in question, the limit will commute with composition: |
| <math> | | <math> |
| \lim_{x \rightarrow t} f(g(x)) = f(\lim_{x \rightarrow t} g(x)). | | \lim_{x \rightarrow t} f(g(x)) = f(\lim_{x \rightarrow t} g(x)). |
| </math> | | </math> |
| In our case, <math>e(\cdot)</math> is continuous, so | | In our case, <math>e(\cdot)</math> is continuous, so |
| <math> | | <math> |
| \lim_{x \rightarrow 0^+} x^x = e^{\lim_{x \rightarrow 0^+} \frac{\ln x}{\frac{1}{x}}}. | | \lim_{x \rightarrow 0^+} x^x = e^{\lim_{x \rightarrow 0^+} \frac{\ln x}{\frac{1}{x}}}. |
| </math> | | </math> |
| * The question, then, is what is <math>\lim_{x \rightarrow 0^+} \frac{\ln x}{\frac{1}{x}}</math>. | | * The question, then, is what is <math>\lim_{x \rightarrow 0^+} \frac{\ln x}{\frac{1}{x}}</math>. |
| * As <math>x \rightarrow 0^+</math>, <math>\ln x \rightarrow -\infty</math>, <math>\frac{1}{x} \rightarrow +\infty</math>. In this situation we can apply l'Hôpital's rule: | | * As <math>x \rightarrow 0^+</math>, <math>\ln x \rightarrow -\infty</math>, <math>\frac{1}{x} \rightarrow +\infty</math>. In this situation we can apply l'Hôpital's rule: |
| <math> | | <math> |
| \lim_{x \rightarrow 0^+} \frac{\ln x}{\frac{1}{x}} = \lim_{x \rightarrow 0^+} \frac{\frac{d}{dx} \ln x}{\frac{d}{dx} \frac{1}{x}} = \frac{\frac{1}{x}}{-\frac{1}{x^2}} = \frac{\frac{1}{x} \cdot x^2}{-\frac{1}{x^2} \cdot x^2} = -x. | | \lim_{x \rightarrow 0^+} \frac{\ln x}{\frac{1}{x}} = \lim_{x \rightarrow 0^+} \frac{\frac{d}{dx} \ln x}{\frac{d}{dx} \frac{1}{x}} = \frac{\frac{1}{x}}{-\frac{1}{x^2}} = \frac{\frac{1}{x} \cdot x^2}{-\frac{1}{x^2} \cdot x^2} = -x. |
| </math> | | </math> |
| * Hence <math>\lim_{x \rightarrow 0^+} x^x = e^0 = 1</math>. | | * Hence <math>\lim_{x \rightarrow 0^+} x^x = e^0 = 1</math>. |
|
| |
|
Line 83: |
Line 83: |
| * Differentiating the denominator in <math>\frac{\sin \frac{1}{x}}{\frac{1}{x}}</math>, we obtain <math>-\frac{1}{x^2}</math>. | | * Differentiating the denominator in <math>\frac{\sin \frac{1}{x}}{\frac{1}{x}}</math>, we obtain <math>-\frac{1}{x^2}</math>. |
| * Thus | | * Thus |
| <math> | | <math> |
| \lim_{x \rightarrow +\infty} x \sin \frac{1}{x} = \lim_{x \rightarrow +\infty} \frac{\sin \frac{1}{x}}{\frac{1}{x}} = \lim_{x \rightarrow +\infty} \frac{\left(\cos \frac{1}{x}\right) \left(-\frac{1}{x^2}\right)}{-\frac{1}{x^2}} = \lim_{x \rightarrow +\infty} \cos \frac{1}{x} = 1. | | \lim_{x \rightarrow +\infty} x \sin \frac{1}{x} = \lim_{x \rightarrow +\infty} \frac{\sin \frac{1}{x}}{\frac{1}{x}} = \lim_{x \rightarrow +\infty} \frac{\left(\cos \frac{1}{x}\right) \left(-\frac{1}{x^2}\right)}{-\frac{1}{x^2}} = \lim_{x \rightarrow +\infty} \cos \frac{1}{x} = 1. |
| </math> | | </math> |
| * Similarly we can find that <math>\lim_{x \rightarrow -\infty} x \sin \frac{1}{x} = 1</math>. | | * Similarly we can find that <math>\lim_{x \rightarrow -\infty} x \sin \frac{1}{x} = 1</math>. |
Latest revision as of 09:53, 22 December 2020
Derivatives
The derivative of
Question
What is ?
Solution 1
- Let .
- Take of both sides: .
- Differentiate both sides: .
- Apply the chain rule on the left-hand side: .
- Apply the product rule on the right-hand side: .
- Putting it together, we have .
- Hence .
Solution 2
- Note that , so .
- Applying the chain rule, .
- Applying the product rule, .
- Therefore .
Integrals
The integral
Question
What is ?
Solution
- We can write as .
- Consider the series expansion of :
.
- We can interchange the integration and summation (we can recognize this as a special case of the Fubini/Tonelli theorems) and write
Limits
The limit of
Question
What is ?
Solution
- Note that , so .
- We can further rewrite this as .
- As long as is continuous and the limit of exists at the point in question, the limit will commute with composition:
In our case, is continuous, so
- The question, then, is what is .
- As , , . In this situation we can apply l'Hôpital's rule:
- Hence .
The limits of and
Question
What are and ?
Solution
- Let us rewrite as .
- As , and .
- We have "", so we can apply l'Hôpital's rule.
- Differentiating the numerator in , we obtain .
- Differentiating the denominator in , we obtain .
- Thus
- Similarly we can find that .