|
|
(3 intermediate revisions by the same user not shown) |
Line 52: |
Line 52: |
| === Solution === | | === Solution === |
|
| |
|
| * Note that <math>x = e^{\ln x}$, so $x^x = (e^{\ln x})^x = e^{x \ln x}</math>. | | * Note that <math>x = e^{\ln x}</math>, so <math>x^x = (e^{\ln x})^x = e^{x \ln x}</math>. |
| * We can further rewrite this as <math>x^x = e^{x \ln x} = e^{\frac{\ln x}{\frac{1}{x}}}</math>. | | * We can further rewrite this as <math>x^x = e^{x \ln x} = e^{\frac{\ln x}{\frac{1}{x}}}</math>. |
| * As long as <math>f</math> is continuous and the limit of <math>g</math> exists at the point in question, the limit will commute with composition: | | * As long as <math>f</math> is continuous and the limit of <math>g</math> exists at the point in question, the limit will commute with composition: |
| <math> | | <math> |
| \lim_{x \rightarrow t} f(g(x)) = f(\lim_{x \rightarrow t} g(x)). | | \lim_{x \rightarrow t} f(g(x)) = f(\lim_{x \rightarrow t} g(x)). |
| </math> | | </math> |
| In our case, <math>e(\cdot)</math> is continuous, so | | In our case, <math>e(\cdot)</math> is continuous, so |
| <math> | | <math> |
| \lim_{x \rightarrow 0^+} x^x = e^{\lim_{x \rightarrow 0^+} \frac{\ln x}{\frac{1}{x}}}. | | \lim_{x \rightarrow 0^+} x^x = e^{\lim_{x \rightarrow 0^+} \frac{\ln x}{\frac{1}{x}}}. |
| </math> | | </math> |
| * The question, then, is what is <math>\lim_{x \rightarrow 0^+} \frac{\ln x}{\frac{1}{x}}</math>. | | * The question, then, is what is <math>\lim_{x \rightarrow 0^+} \frac{\ln x}{\frac{1}{x}}</math>. |
| * As <math>x \rightarrow 0^+</math>, <math>\ln x \rightarrow -\infty$, $\frac{1}{x} \rightarrow +\infty</math>. In this situation we can apply l'Hôpital's rule: | | * As <math>x \rightarrow 0^+</math>, <math>\ln x \rightarrow -\infty</math>, <math>\frac{1}{x} \rightarrow +\infty</math>. In this situation we can apply l'Hôpital's rule: |
| <math> | | <math> |
| \lim_{x \rightarrow 0^+} \frac{\ln x}{\frac{1}{x}} = \lim_{x \rightarrow 0^+} \frac{\frac{d}{dx} \ln x}{\frac{d}{dx} \frac{1}{x}} = \frac{\frac{1}{x}}{-\frac{1}{x^2}} = \frac{\frac{1}{x} \cdot x^2}{-\frac{1}{x^2} \cdot x^2} = -x. | | \lim_{x \rightarrow 0^+} \frac{\ln x}{\frac{1}{x}} = \lim_{x \rightarrow 0^+} \frac{\frac{d}{dx} \ln x}{\frac{d}{dx} \frac{1}{x}} = \frac{\frac{1}{x}}{-\frac{1}{x^2}} = \frac{\frac{1}{x} \cdot x^2}{-\frac{1}{x^2} \cdot x^2} = -x. |
| </math> | | </math> |
| * Hence <math>\lim_{x \rightarrow 0^+} x^x = e^0 = 1</math>. | | * Hence <math>\lim_{x \rightarrow 0^+} x^x = e^0 = 1</math>. |
|
| |
|
Line 73: |
Line 73: |
| === Question === | | === Question === |
|
| |
|
| What are <math>\lim_{x \tendsto +\infty} x \sin \frac{1}{x}</math> and <math>\lim_{x \tendsto -\infty} x \sin \frac{1}{x}</math>? | | What are <math>\lim_{x \rightarrow +\infty} x \sin \frac{1}{x}</math> and <math>\lim_{x \rightarrow -\infty} x \sin \frac{1}{x}</math>? |
|
| |
|
| === Solution === | | === Solution === |
|
| |
|
| * Let us rewrite <math>x \sin \frac{1}{x}$ as $\frac{\sin \frac{1}{x}}{\frac{1}{x}}</math>. | | * Let us rewrite <math>x \sin \frac{1}{x}</math> as <math>\frac{\sin \frac{1}{x}}{\frac{1}{x}}</math>. |
| * As <math>x \tendsto +\infty$, $\frac{1}{x} \tendsto 0</math> and <math>x \sin \frac{1}{x} \tendsto 0</math>. | | * As <math>x \rightarrow +\infty</math>, <math>\frac{1}{x} \rightarrow 0</math> and <math>x \sin \frac{1}{x} \rightarrow 0</math>. |
| * We have ``<math>\frac{0}{0}</math>'', so we can apply l'Hôpital's rule. | | * We have "<math>\frac{0}{0}</math>", so we can apply l'Hôpital's rule. |
| * Differentiating the numerator in <math>\frac{\sin \frac{1}{x}}{\frac{1}{x}}</math>, we obtain <math>\left(\cos \frac{1}{x}\right) \left(-\frac{1}{x^2}\right)</math>. | | * Differentiating the numerator in <math>\frac{\sin \frac{1}{x}}{\frac{1}{x}}</math>, we obtain <math>\left(\cos \frac{1}{x}\right) \left(-\frac{1}{x^2}\right)</math>. |
| * Differentiating the denominator in <math>\frac{\sin \frac{1}{x}}{\frac{1}{x}}</math>, we obtain <math>-\frac{1}{x^2}</math>. | | * Differentiating the denominator in <math>\frac{\sin \frac{1}{x}}{\frac{1}{x}}</math>, we obtain <math>-\frac{1}{x^2}</math>. |
| * Thus | | * Thus |
| <math> | | <math> |
| \lim_{x \tendsto +\infty} x \sin \frac{1}{x} = \lim_{x \tendsto +\infty} \frac{\sin \frac{1}{x}}{\frac{1}{x}} = \lim_{x \tendsto +\infty} \frac{\left(\cos \frac{1}{x}\right) \left(-\frac{1}{x^2}\right)}{-\frac{1}{x^2}} = \lim_{x \tendsto +\infty} \cos \frac{1}{x} = 1. | | \lim_{x \rightarrow +\infty} x \sin \frac{1}{x} = \lim_{x \rightarrow +\infty} \frac{\sin \frac{1}{x}}{\frac{1}{x}} = \lim_{x \rightarrow +\infty} \frac{\left(\cos \frac{1}{x}\right) \left(-\frac{1}{x^2}\right)}{-\frac{1}{x^2}} = \lim_{x \rightarrow +\infty} \cos \frac{1}{x} = 1. |
| </math> | | </math> |
| * Similarly we can find that <math>\lim_{x \tendsto -\infty} x \sin \frac{1}{x} = 1</math>. | | * Similarly we can find that <math>\lim_{x \rightarrow -\infty} x \sin \frac{1}{x} = 1</math>. |
Derivatives
The derivative of 
Question
What is
?
Solution 1
- Let
.
- Take
of both sides:
.
- Differentiate both sides:
.
- Apply the chain rule on the left-hand side:
.
- Apply the product rule on the right-hand side:
.
- Putting it together, we have
.
- Hence
.
Solution 2
- Note that
, so
.
- Applying the chain rule,
.
- Applying the product rule,
.
- Therefore
.
Integrals
The integral 
Question
What is
?
Solution
- We can write
as
.
- Consider the series expansion of
:
.
- We can interchange the integration and summation (we can recognize this as a special case of the Fubini/Tonelli theorems) and write
Limits
The limit of 
Question
What is
?
Solution
- Note that
, so
.
- We can further rewrite this as
.
- As long as
is continuous and the limit of
exists at the point in question, the limit will commute with composition:
In our case,
is continuous, so
- The question, then, is what is
.
- As
,
,
. In this situation we can apply l'Hôpital's rule:
- Hence
.
The limits of
and 
Question
What are
and
?
Solution
- Let us rewrite
as
.
- As
,
and
.
- We have "
", so we can apply l'Hôpital's rule.
- Differentiating the numerator in
, we obtain
.
- Differentiating the denominator in
, we obtain
.
- Thus
- Similarly we can find that
.