Difference between revisions of "Mathematics/Calculus/Corner cases"
From Thalesians Wiki
< Mathematics | Calculus
(Added a corner case.) |
(Edited a corner case: added another solution.) |
||
Line 2: | Line 2: | ||
== The derivative of <math>\frac{d}{dx} x^x</math> == | == The derivative of <math>\frac{d}{dx} x^x</math> == | ||
=== Question === | |||
What is <math>\frac{d}{dx} x^x</math>? | |||
=== Solution 1 === | |||
* Let <math>y = x^x</math>. | * Let <math>y = x^x</math>. | ||
Line 10: | Line 16: | ||
* Putting it together, we have <math>\frac{1}{y} \cdot \frac{dy}{dx} = \ln x + 1</math>. | * Putting it together, we have <math>\frac{1}{y} \cdot \frac{dy}{dx} = \ln x + 1</math>. | ||
* Hence <math>\frac{dy}{dx} = y (\ln x + 1) = x^x (\ln x + 1)</math>. | * Hence <math>\frac{dy}{dx} = y (\ln x + 1) = x^x (\ln x + 1)</math>. | ||
=== Solution 2 === | |||
* Note that <math>x = e^{\ln x}</math>, so <math>x^x = (e^{\ln x})^x = e^{x \ln x} </math>. | |||
* Applying the chain rule, <math>\frac{d}{dx} x^x = \frac{d}{dx} e^{x \ln x} = e^{x \ln x} \frac{d}{dx} x \ln x</math>. | |||
* Applying the product rule, <math>\frac{d}{dx} x \ln x = 1 \cdot \ln x + x \cdot \frac{1}{x} = \ln x + 1</math>. | |||
* Therefore <math>\frac{d}{dx} x^x = e^{x \ln x} (\ln x + 1) = x^x (\ln x + 1)</math>. | |||
= Integrals = | = Integrals = | ||
= Limits = | = Limits = |
Revision as of 09:06, 22 December 2020
Derivatives
The derivative of
Question
What is ?
Solution 1
- Let .
- Take of both sides: .
- Differentiate both sides: .
- Apply the chain rule on the left-hand side: .
- Apply the product rule on the right-hand side: .
- Putting it together, we have .
- Hence .
Solution 2
- Note that , so .
- Applying the chain rule, .
- Applying the product rule, .
- Therefore .